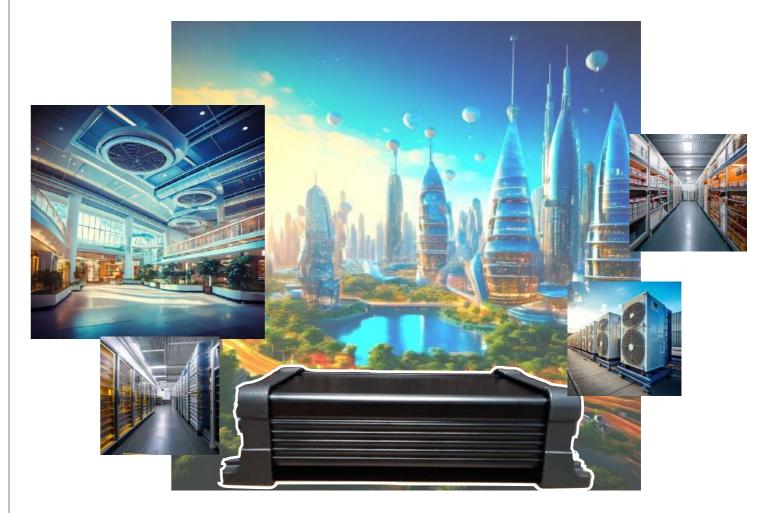

Reduction achievements of PHANTOM Active.

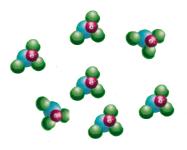
Facility air conditioning, refrigeration, and freezing systems are critical equipment that cannot be stopped for business continuity. PHANTOM Active does not require equipment modifications for installation, allowing implementation without the need to shut down power.

******PHANTOM Active is recommended for the following industries.

For inquiries about "PHANTOM Active", please contact us.

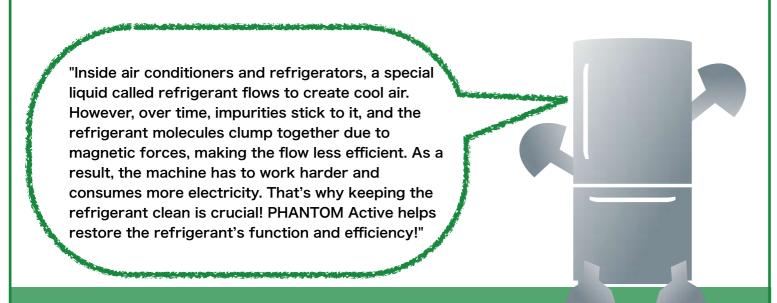
hayata@jepgroup.co.jp


TEL: 81-3-5325-3049

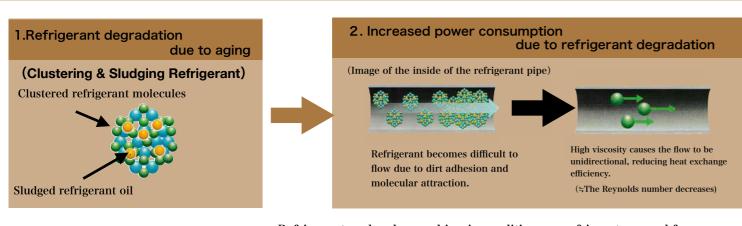

Innovative refrigerant restoration technology

PHANTOM

\sim Restoring refrigerant to optimize heat exchange efficiency. \sim



Made in Japan



saves approximately 20% in electricity consumption!

Devices using refrigerants in aging air conditioners, refrigerators, and freezers **Reasons for increased electricity consumption**

Refrigerant molecules used in air conditioners, refrigerators, and freezers have polarity. After years of use, refrigerant degradation occurs. Specifically, the molecules may attract each other and cluster together (clustering). Additionally, impurities and deposits accumulate (sludging), causing the refrigerant flow within the piping to deteriorate and reducing cooling performance. As a result, the burden on the equipment increases, leading to higher power consumption.

Aging refrigerant inside the piping transforms into a high-viscosity refrigerant that only flows in a single direction. As a result, the flow slows down, reducing heat exchange efficiency. This leads to decreased performance in air conditioners and cooling devices, increasing the burden on the equipment and causing higher power consumption.

[The power consumption of air conditioning and refrigeration equipment increases year by year."]

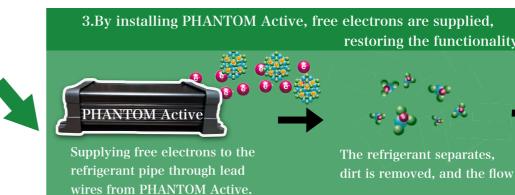
∼Clustering & Sludging

Consumption Due to

Refrigerant Degradation \sim

Increased Power

*Initial performance degradation is minimal, and stability is maintained for about 3 to 10 years (approximately 3% degradation per year \rightarrow around 50% degradation over 10 years). However, after 12 years, a sharp decline in performance is observed. The aging of refrigerant also becomes a factor that places additional strain on the equipment.


"Reduce electricity costs for factory air conditioners,

Energy savings without modifying existing

Modifying or altering equipment may cause malfunctions or negatively impact its performance. This device only requires a lead wire to supply free electrons by making contact with the refrigerant pipe, with the only necessary installation work being electrical wiring. No power shutdown is required during installation.

Reduce electricity consumption.

Improving heat exchange efficiency reduces power consumption, increases downtime, and leads to lower electricity costs.

By supplying free electrons from "PHANTOM Active ", the bonding of refrigerant molecules loosens, improving flow. The breakdown of sludge restores heat exchange efficiency, contributing to equipment performance maintenance and energy savings.

Cases where the effectiveness of "PHANTOM Active " is reduced

- The equipment is new (the refrigerant has not aged significantly)
- \rightarrow Clustering and sludging have not progressed, so the expected effect may not be achieved.
- Using a refrigerant with low polarity \rightarrow It is less likely to form clusters, making the effect weaker.
- If the number of installed PHANTOM Active units is not appropriate for the rated capacity or

 \cdot When a twin-type system adjusts capacity using two electronic expansion valves \rightarrow In twin-type systems, two electronic expansion values finely control the refrigerant flow (= the influence of free electrons is more likely to be dispersed). As a result, the refrigerant improvement effect of free electrons does not spread evenly, reducing effectiveness.

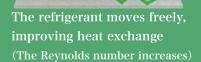
If the equipment has malfunctions \rightarrow The increase in heat exchange efficiency is recognized as supercooling, causing the system to regulate itself according to standard operation. As a result, the effect is diminished.

We conduct test operations to evaluate effectiveness. After that, our expert team provides careful guidance on installation and operational know-how.

refrigerators, and freezers by 20%."

PHANTOM Active **Features**

Reduce the burden on equipment.


As the refrigerant flow stabilizes, the load on the compressor is reduced. extending the lifespan of the equipment. Additionally, operating noise decreases, and abnormal pressure increases that could cause shutdowns are prevented.

Lower environmental impact.

Reducing power consumption ultimately leads to a reduction in CO2 emissions.

restoring the functionality of the refrigerant.

(Image of the inside of the pipe where the

refrigerant charge amount \rightarrow The effect may not be fully realized.